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1 Introduction

Parsing, the recognition and analysis of input strings based on formal gram-

mars, is a ubiquitous concept of software engineering and computer science.

The matter is particularly important to computer programming itself, as vir-

tually all programming languages are parsed from textual representations.

Therefore, researchers and software engineers have developed numerous sys-

tems dedicated to parsing languages defined by formal grammars [1, 2]. Al-

though extensive research has been done on parsing theory since the early

70s, as evident by the lasting success of Yacc based parsers [3] and the pars-

ing techniques introduced in that period [1], parsing can hardly be called a

solved problem. Recent additions to well-known parsing techniques like LL

[4, 5] and the introduction of novel techniques like packrat parsing and the

associated parsing expressions grammars (PEG) [6, 7] have shown that there

is still potential for improvement on both parsing performance and cardinality

of supported grammars.

1.1 Topic and context
Another effect of the widespread adoption of the Yacc technology was demon-

strating the feasibility of using parser generators to produce parsers for widely

used systems. While handcrafted parsers often provide increased flexibility and

better error handling, later parser generators started incorporating these im-

provements to allow convenient and fast parser construction [8]. The ANTLR

parser generator [9, 10] is arguably the best-known example of this. Starting

as a simple parser generator for predicated LL(k) grammars, ANTLR has un-

dergone a large number of improvements to its underlying parsing algorithm

and thus has contributed to research in this field [4, 8].

Particularly exciting about ANTLR are its advances in arbitrary, unbounded

LL lookahead [4, 5]. Their aptly called Adaptive LL(*) – or ALL(*) – strat-

egy combines the unbounded lookahead mechanism known from other parsing

techniques such as GLR [11] and PEG [7] with the strengths of LL parsers such
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1 Introduction

as its error handling and ease of debugging [4]. Although ANTLR has seen

significant success in the commercial software industry, its advances in pars-

ing research remain unused by other parsing libraries. A brief online search

reveals that the current iteration of the ANTLR project, ANTLR4, is the only

LL parser with unbounded lookahead [12]. While not providing an exhaustive

listing, it demonstrates the prevalence of LL(1) and LL(k) parsers.

1.2 Questions and objectives
When presenting their findings, the authors claim that it outperforms any other

parser generator while being only about 20% slower than the hand-built JavaC

parser [5]. Due to its lookahead memorisation, ANTLR4 even outperforms

JavaC when reparsing the test corpus. This performance assessment might

be correct for Java-based parsers, but since JS-based languages and runtimes

have become more critical in the software industry [13], JS parser libraries

and parser generators with JS targets have become increasingly relevant. In

this space, the Chevrotain parsing library [14] – an LL(k) interpreting parser

– asserts the spot for the fastest parser, outperforming both ANTLR4 and

hand-built parsers by a factor of two in an informal benchmark using the

JSON grammar. Chevrotain achieves its incredible performance by heavily

optimizing for the V8 engine, which is used in Chromium and the Node.js

runtime [15–17].

Several questions arise from this claim. Most decisions of the JSON language

can be parsed using an unpredicated LL(1) parser. As a consequence, both

Chevrotain and ANTLR4 use an optimized LL(1) lookahead instead of their

usual LL(k) and ALL(*) strategies. Therefore, this benchmark does not allow

for comparison between the two lookahead algorithms. This begs the question

whether Chevrotain’s parsing algorithm is faster than ANTLR4’s generated

parsers on more complex grammars. Additionally, can it be further enhanced

by using the ALL(*) strategy even if it is faster? Answering both of these

questions is the objective of this thesis.
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1 Introduction

1.3 Overview of the structure
In chapter 2 we first present the basics of formal languages before moving on to

explain the various techniques for parsing them. Additionally, an in-depth look

at Chevrotain’s architecture will be performed, highlighting its unique features

compared to other parser libraries and parser generators. Furthermore, we

discuss the current state-of-the-art parsing approaches in chapter 3.

Chapter 4 contains a description of the ALL(*) strategy implementation for

Chevrotain. In chapter 5, we analyze how this new version of Chevrotain per-

forms compared to other parsing libraries. We then discuss these benchmark

results in chapter 6. Finally, we summarise the findings and propose open

issues for future work.
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2 Background

In this chapter, we give an overview of formal languages and outline well-known

parsing techniques and their different lookahead algorithms. Furthermore, we

explain how the Chevrotain parser library works in detail and how it differen-

tiates itself from other parser libraries and parser generators.

2.1 Formal Languages
In the narrower sense of computer science, a formal language is a mathematical

structure, defined on top of an alphabet, by the rules of a formal grammar [2,

18]. They are primarily concerned with the syntax of a sentence and allow

to determine whether a specific string belongs to it or not [18]. The formal

grammar allows to “generate” the formal language by using rules and elements

of our alphabet to describe it [2].

As an example, let’s take the alphabet Σ = {ε, a, b, c}. Using it, we can

construct words such as a, abc and ε, the empty word. Now, languages using

this alphabet might not contain every word built by this alphabet, but only a

subset:

L1 = {ab, ac, abc}

L2 = {a, aa, aaa, ..., an}

L3 = {ε}

2.2 Formal Grammars
Formal grammars enable us to generate languages more generically than simply

writing them down, especially if the language can grow infinitely large, as is

the case for L2. For parsing, we will limit ourselves to the class of context-free

grammars [2]. A context-free grammar is composed of a set of nonterminals

N , a set of terminals T , a set of rules P , and a start symbol S which is a

nonterminal. The union N ∪T describes the set of productions. We write rules
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2 Background

in the form of A −→ α, where A is a nonterminal and α is a composition of an

arbitrary amount of nonterminals and terminals. Rules with the same name

can be grouped as A −→ α1 | α2 | ... | αp, where each αk is called an alternative

of A. [2, 19]

In the following, we will use the Extended Backus-Naur-Form (EBNF) to de-

scribe grammars. The EBNF extends alternatives to support optionals and

repetitions. These are purely practical considerations, as both of these gram-

mar features can be represented using empty alternatives or recursive rule

invocations. A grammar rule such as P −→ α | αP can be replaced with

P −→ α+ using the EBNF notation.

2.3 Parsing Techniques
Language construction using grammars is only the first step towards parsing.

In practice, parsing does not only determine whether a string belongs to a

language but also which productions constructed the string given a grammar

[2]. Identifying productions is necessary since our languages contain embedded

semantics. To understand the correct semantic meaning behind a sentence,

we need the exact productions used to generate the string. The encountered

productions form the parse tree [2, 20]. Reconstructing the parse tree is the

main subject of parsing [2].

In the following, we explain the basics of commonly used parsing techniques,

emphasising their respective lookahead mechanisms. The lookahead is a means

to decide which alternatives the parser should choose by peeking into its un-

consumed input. We start with bottom-up parsers and move on to top-down

parsers.

2.3.1 Bottom-Up Parsers

Formally, bottom-up parsers derive the parse tree by searching for a series

of leftmost reductions. They correspond to the rightmost productions that

produced the input text [2]. Figure 2.1 presents a parse tree for a mathemat-

ical expression language. A bottom-up parser would first find the production

matching the leftmost bottom element of the parse tree. The parser will then

5



2 Background

move incrementally upwards and rightwards [21]. Figure 2.2 illustrates this

behaviour. It portraits the same parse tree as figure 2.1 but replaces the labels

of the input text and production names with the order in which the parser

consumes them.

The search for productions can be realised using depth-first or breadth-first

search algorithms. Both operate on the entire tree and are exponential in size.

A depth-first search operates using backtracking [2]. While the breadth-first

search is conceptually more straighforward, it has far larger memory require-

ments [2]. Unoptimised, both methods show exponential run time behaviour,

rendering them unfit for real-world parsing tasks [2].

2.3.2 Earley

The Earley parser [22] is a breadth-first, bottom-up parser. Although de-

scribed as a breadth-first top-down parser with bottom-up recognition by its

author [22], its ability to handle direct left recursion aligns it closer to the class

of bottom-up parsers. It improves the fan-out behaviour of naive breadth-first

search by determining which reductions are incompatible with top-down pars-

expression
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value
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Figure 2.1: A parse tree for a mathematical expression language
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ing [2]. This reduces the algorithm to O(n3) from O(Cn) for some constant

C.

Adding a lookahead mechanism further improves the performance of the Earley

parser. Such a lookahead computes the FIRST set of all nonterminals and

their alternatives. The FIRST set of a production is the set of all terminals

the production can start with [2]. While including a lookahead in an Earley

parser makes it more efficient, as shown by Bouckaert, Pirotte and Snelling

[23], other Earley parsing algorithms such as by McLean and Horspool [24]

can improve parsing performance considerably without including a lookahead.

The authors achieve this by building a hybrid between Earley and LR parsers

[24].

2.3.3 LR

An LR parser (short for Left-to-right, Rightmost derivation) works similar to

an Earley parser. However, it uses a different approach to reduce the fan-out

behaviour of the breadth-first search: By constructing a finite state automaton

that starts with the start rule of the grammar and only considers right-hand
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2 Background

sides that could be derived from the start symbol [2, 25, 26]. The automaton

is then converted into an ACTION and GOTO table, allowing the parser to

quickly identify which reduction to choose. While this reduces the strength of

the parser, it also improves the algorithm to O(n) [2]. For example, a grammar

that could never be deterministically parsed by an LR parser might look like

this:

S −→ aSa | a

The reason for this is simple. For every parsed aSa production, the LR parser

would have to start its reduction from the middle of the input. However, no

terminal indicates the middle of the input, rendering the LR parser unable to

reduce the input to its intended productions [2]. This issue is not limited to

LR parsers but also affects LL and PEG parsers presented in sections 2.3.5

and 2.3.6, respectively [7].

There are multiple methods to construct the automaton, with the most basic

one being LR(0). Additional, more powerful methods take lookahead into

account, like LR(1), LALR(1) or LR(k). These use a lookahead of 1 or k

tokens, respectively. In practice, we rarely encounter LR(0) languages, while

LR(1) grammars are ubiquitous [2]. We can prove that every LR(k) grammar

with k > 1 can be transformed into an LR(1) grammar, but not LR(0) [27].

As the lookahead of LR grammars increases, the automaton and the associated

tables become increasingly large [28]. For k = 1 in particular, better methods

of deriving the tables have been discovered [2, 3], at the cost of its parsing

power. The LALR(1) (short for Look-Ahead LR) method achieves this by first

constructing all LR(0) automaton states and only deriving new states when

necessary for parsing by adding a lookahead of 1, eliminating unnecessary

automaton states (as constructed by LR(k)) in the process. While efficient

LR(k) parser construction algorithms have been presented [29], k = 1 is usually

enough for most real-world grammars [2].
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2 Background

2.3.4 Top-Down Parsers

As indicated by their name, top-down parsers process the input text by first

predicting the top-most production, descending recursively until they have

consumed all input. Figure 2.3 illustrates this behavior by replacing the labels

from figure 2.1 to indicate the parsing step order. Top-down parsing can be

accomplished using depth-first and breadth-first search algorithms, suffering

from the same performance issues as naive bottom-up parsing [2, 26]. However,

compared to bottom-up parsers, their prediction step for finding the top-most

production does not have to rely on search and can be realized using other

methods, drastically improving performance [2].

2.3.5 LL

The LL (Left-to-right, Leftmost derivation) method replaces the search men-

tioned above with a simple table lookup. As previously with the Earley parser,

we can use the FIRST set to provide the parser with lookahead information

for each production [2]. The parser consults the lookup table each time it has

to perform a prediction on the subsequent derivation – meaning when it en-
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Figure 2.3: Order of top-down parsing steps
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2 Background

counters a production in the parsing process. The prediction algorithm peeks

into the token stack, matches the tokens with entries in the lookup table and

selects a single production to continue parsing [2]. In terms of performance,

LL parsers take O(n4) units of time in the worst case but operate closer to

O(n) in practice, with n being the input length [2, 5].

Table 2.1 presents the lookup table for the grammar G1. It shows which of the

3 productions to choose from depending on the start production and the re-

ceived lookahead token. Since all predictions within G1 can be achieved using a

lookahead of a single token, it is an LL(1) grammar. Note that there is no pre-

diction for production B and terminal a, indicating that such a configuration

is illegal in the language produced by G1.

G1 : A −→ B

A −→ aA

B −→ b

a b

A 2 1
B — 3

Table 2.1: Lookup table for the simple LL(1) grammar G1

Contrary to LR, a usable LL parser requires at least a lookahead of 1, as an

LL(0) language would only consist of a single word [2]. However, the lookup

table approach is easily extendable to construct an LL(k) language. Although

such a lookup table could, in theory, experience exponential growth for k > 1,

in practice, this growth is much closer to being linear [30]. The lookup table for

LL(k) is built by extending the FIRST set to not only include a single terminal

of each production but the first k terminals. This produces the FIRST k set,

of which the already known FIRST set is just a special case for k = 1.

As with LR grammars, it is proven that any LL(k) grammar can be trans-

formed into an LL(1) grammar [31]. However, doing so is not recommended,
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2 Background

as constructing an LL(k) parser is much less computationally expensive com-

pared to an LR(k) parser.

LL(k) parsers cannot parse grammars that require an unbounded lookahead,

such as G2. The FIRST k set of both A1 and A2 will contain one path of

terminals that looks like ak. Consequently, the parser cannot decide which

alternative to choose since, from the perspective of the LL(k) parser, G2 is

ambiguous [20].

G2 : A1 −→ Bb

A2 −→ Bc

B −→ a∗

Such a grammar needs an unbounded LL parser. We will discuss approaches to

LL parsing with unbounded lookahead in chapter 3. Additionally, regardless

of the amount of lookahead, LL parsers are generally unable to handle left-

recursion [2, 5].

2.3.6 PEG

Context-free grammars describe a generative approach to languages. For prac-

tical parsing use, context-free grammars are interpreted as being recognition-

based [7]. Previous approaches to parsing such as LL, LR and Earley use

context-free grammars. Ford introduces the Parsing Expression Grammars

(PEG) system to describe languages that are meant to be parsed [7]. For

this use case, an extension to the EBNF grammar syntax is presented, which

aims to improve on ambiguous behaviour of the standard EBNF notation and

introduces additional parsing features for practical use.

A context-free grammar rule such as P −→ a | ab poses an interesting prob-

lem to deterministic lookahead parsers. While it is clear which language the

unordered alternative generates, it is left up for interpretation of the specific

parser implementation for how to process this parsing “instruction”. For ex-

ample, one possible approach would always be to parse the longest alternative,

meaning the matching alternative that consumes the most tokens. However,

11
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this approach will fail to parse specific languages correctly, such as the one

generated by G3. The word ab belongs to the language L5 = {ab, abb}, but

when matching the longest alternative, the parser would reject this input since

the token stack will be empty by the time it arrives at the second b terminal.

G3 : A −→ Bb

B −→ a | ab

PEGs tackle this issue by dismissing the notion of unordered alternatives and

introducing the “/” (SLASH ) operator instead which indicates the order of

alternatives [7]. This feature alone does not eliminate the issue as a / ab

would only ever match a and not ab, while ab / a exhibits the same issue. For

this, PEG additionally allows specifying syntactic prefix predicates within the

grammar such as the & (AND) and ! (NOT ) predicates, which indicate only

to match the alternative if the lookahead for the prefixed production succeeds

[7]. Note that such predicates also exist in common LL parser libraries and

generators, although they are usually expressed in a Turing complete language

instead of being a part of the grammar [5]. Using the & predicate we can

modify B to B −→ ab&b / a, enabling successful parsing of L5.

In addition to laying the groundwork for a different kind of grammar presen-

tation with PEGs, Ford shows that it is possible to build linear time parsers

for them, thereby introducing the packrat parser [6]. The packrat parser works

similarly to backtracking parsers [1]. Using a memoisation table that stores

previous parsing attempts for productions, the parser can improve the super-

linear time of backtracking parsers. Furthermore, this approach allows for

arbitrary, unbounded lookahead and the ability to parse left-recursion, mak-

ing it stronger than both LL(k) and LR(k) parsers.

2.4 Chevrotain
Chevrotain is a parsing library developed by SAP SE for JS [14]. Since its

inception in 2015, it has seen a steady rise in popularity, culminating in more

than 8 million downloads from the package registry npm in 2021 and usage in

academia [32–34]. In recent years, additional features and improvements have
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made the library more approachable to developers, for example, extending

its lookahead algorithm from LL(1) to LL(k). Nevertheless, its main selling

point has always been the same: Chevrotain provides an embedded Domain

Specific Language (DSL) to define its grammar while outperforming other

parser libraries by several times. By embedding its grammar definition in

code, it does not need to depend on generating additional code or parsing its

grammar from an external source. Instead, its approach allows easy debugging

and code bundling without complicated configuration.

2.4.1 Grammar Recognition

Unlike parser generators [3, 8, 11] or parser combinators [35], which explic-

itly define a grammar using a grammar definition file or a functional builder

respectively, Chevrotain allows to define grammars using an object-oriented

paradigm. Listing 1 displays a sample grammar for this. Using the perform-

SelfAnalysis() method, the parser constructs an internal grammar represen-

tation. It accomplishes this by replacing the implementations of each parsing

method (CONSUME, SUBRULE, OPTION, etc.) with a “recording” implementation.

Afterwards, it invokes each parser rule exactly once without parsing any actual

input, thereby transforming the parser rules into an abstract grammar repre-

sentation with the help of the recording methods. Each time the embedded

parsing DSL calls a recording method, the grammar recorder adds a corre-

sponding production to the abstract grammar representation of the currently

recorded rule. The parser shown in listing 1 results in the EBNF grammar

seen in G4:

G4 : A −→ a (bc) ∗ B?

B −→ d | e

Additional computation is performed during the self-analysis phase to enable

the parsing process. The most important aspect of this is the construction

of the LL(k) lookup tables. Afterwards, an optional validation checks for any

issues based on the recognized grammar, which would prevent successful pars-

ing, such as left-recursion or ambiguous alternatives. This validation should be
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disabled for productive usage since it introduces considerable computational

overhead and provides no value after the initial development phase. Note

that these computations would usually be performed during compile time of

a parser generator tool and not run time of the parser itself, which is what is

happening in the case of Chevrotain.

Furthermore, this grammar recognition approach lends to the simple addition

of semantic actions, as the parsing instructions can be interspersed with other

code without negatively impacting the parsing process. Semantic actions are

wrapped in ACTION blocks which are skipped during grammar recognition.

2.4.2 LL(k) Lookahead

The LL(k) lookahead procedure in Chevrotain is split into two distinct phases.

The first phase concerns itself with the construction of the lookup table dur-

ing the self-analysis of the parser. Compared to the completely theoretical

approach described in section 2.3.5, Chevrotain deviates slightly in its imple-

mentation: Instead of computing a single lookup table for the whole grammar,

each alternation – which also includes optional elements and repetitions –

receive a dedicated lookup table, consisting of a three-dimensional array of

terminals. We use the term alternation here as an ordered list of alternatives.

Building the lookup table resembles the design of the FIRST k set. Starting

with a loop from i = 1 up to k, the table builder computes a FIRST i set

for each alternative. Before increasing i, the parser performs a check for the

uniqueness of each set. An additional byproduct of the FIRST k computation

is the FOLLOW k set which describes the productions that follow the FIRST k

set. If every FIRST i set identifies their respective alternative uniquely or

every FOLLOW i set is empty, no further computation is necessary. This op-

timisation is performed based on the knowledge that not every prediction in

an LL(k) grammar needs a lookahead of k. The lookup table for alternations

can be sliced into two-dimensional arrays using the index of each alternative.

This two-dimensional array is the practical representation of the FIRST k set,

where every nested array is a possible token sequence that predicts the al-

ternative. Finally, a validation is performed on the resulting lookup table,

confirming that no ambiguous alternatives exist. The ambiguity detection for
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LL(k) is quite simple: Chevrotain iterates over all alternatives within an alter-

nation and determines whether any of its token sequences appear in another

alternative. This indicates a lookahead ambiguity.

The second phase is executed during parsing each time the parser encounters an

alternation. After retrieving the lookup table associated with the alternative,

it performs the prediction and returns the index of the matched alternative

or an indicator for showing that none of the alternatives could be matched

(undefined). Listing 2 shows the algorithm performed on the lookup table

for k > 1. The LA(i) function shown in the code returns the next uncon-

sumed token at position i, thereby peeking into the token stack. As with

PEGs, the algorithm always predicts the first matching alternative, ignoring

every possible matching subsequent alternative. Chevrotain performs another

optimization for the k = 1 case, where the three-dimensional lookup table is

transformed into a simple dictionary, which maps each expected token to a

predicted alternative. Listing 3 displays this optimization tactic.

The implementations shown in the listings were simplified and stripped of fea-

tures such as semantic predicates. In addition, the prediction for alternatives is

performed slightly differently compared to other productions such as optionals

or repetitions, which only need to decide between two distinct alternatives, i.e.

parsing the option/repetition or continuing with the other productions of the

grammar rule. Due to this additional limitation, Chevrotain employs further

optimizations for the lookahead of these productions.
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We have already discussed some relevant work regarding the theory of parsing

systems and lookahead mechanisms in chapter 2. In this chapter, we will

continue with different approaches to arbitrary lookahead parsing and focus

on the work done by Parr, Harwell and Fisher [4, 5] on the ALL(*) parsing

method.

3.1 Arbitrary Lookahead
The ideas behind arbitrary LL lookahead are rooted in the 1970s. Jarabek,

Krawczyk [36] and Nijholt [37] introduced the notion of LL-regular grammars

as an extension of LL(k) grammars. The LL-regular parsers presented by

Nijholt [38] and Poplawski [39] are capable of linear two-pass parsing of the

input. In the first pass, the parser reads the input right-to-left and enriches

each token with a right-context. Afterwards, it performs a left-to-right pass

in a similar fashion to LL(1) parsing. It can then correctly identify which

production to predict based on the right-context. Research on LL-regular

parsers has been mostly theoretical, and it is generally recommended to build

an LR parser instead [2].

Another approach to arbitrary – but not unbounded – LL lookahead is pre-

sented by Belcak [40] as LL(finite). It aims to create LL(k) parsers with-

out specifying k. More specifically, it calculates the exact k each alternative

needs without calculating lookahead information beyond that point. Instead of

building a lookup table for all productions, LL(finite) constructs a lookahead

Deterministic Finite Automaton (DFA). The general structure of this DFA is

similar to DFA for parsing type 3 languages with two key differences. First

off, it does not allow cycles in the DFA since that would exceed the class of

LL(k) grammars. Secondly, its accepting states indicate whether the uncon-

sumed input is part of the lookahead and which alternative this state predicts.

When arriving at an alternative, the associated DFA is simulated, effectively

parsing the next k tokens as if they were part of an acyclic type 3 language.
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Additionally, Belcak proposes modifications to the algorithms for optimization

and enabling semantic predicates.

In the LR world, LR-regular grammars were designed by Cohen and Culik

[41] as unbounded lookahead extensions to LR(k) grammars [25]. Like LL-

regular parsers, they use a two-pass approach that computes right-context

during the first pass to perform the correct reductions in the second pass.

Bermudez and Schimpf [29] define LAR(m) grammars, which successively try

to parse a production with LR(0) and LR(m) before falling back onto an

arbitrary lookahead approach. Similar to Belcak [40], an ideal m is chosen

where possible. However, the developer of the parser needs to “guess” the

amount of left-context needed for the LR(0) parser [29].

Later, Tomita [42] developed generalized LR (GLR) parsers. By forking sub-

parsers from the current state, the parser can explore all possible paths and

choose the best fitting subparser for the given input. A graph-structured

stack is employed to prevent parsing the same input twice in the same way.

Tomita shows GLR parsers to be 5 to 10 times faster than corresponding

Earley parsers. [42] Based on GLR, Scott and Johnstone [43] presented gen-

eralized LL (GLL) parsers, bringing the subparser and graph-structured stack

approach to LL parsing. GLL is O(n3) and GLR is O(np+1) where p is the

length of the longest grammar production.

3.2 ANTLR3 LL(*)
Before Parr et al. developed ALL(*) for ANTLR4, ANTLR3 already employed

a less capable arbitrary LL lookahead mechanism simply called LL(*) [44].

LL(*) lookahead utilizes DFAs during the static grammar analysis phase to

generate switch-on-token prediction code. Contrary to Belcak’s LL(finite),

these DFAs are not limited to pure LL(k) decision, but allow cycles. Therefore,

they are able to express unbounded lookahead scenarios that do not contain

rule recursion. Trying to statically express rule recursion inside DFAs is not

possible using ANTLR3’s approach [44].
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3.3 Adaptive LL(*)
Building on top of the research performed on LL-regular [36–39], GLL [43],

PEGs [6, 7] and previous work on ANTLR3 [44], Parr, Harwell and Fisher [4, 5]

present the ALL(*) parsing method. It heavily incorporates ideas from packrat

parsing [6] by relying on dynamic analysis of the grammar and memorisation

tactics to improve performance.

Before going deeper into the dynamic analysis part performed during the

parser’s run time, we first establish how the necessary static analysis oper-

ates. Using a predicated context-free grammar, ALL(*) constructs an ATN.

ATNs resemble programming languages syntax documentation but provide

additional information about predicates and make heavy use of ε-transitions.

Figure 3.1 shows an ATN for a single nonterminal. For each nonterminal, the

algorithm generates an ATN subgraph, starting with a production start state

and iterating over all productions from the left-most edge of the nonterminal,

including semantic predicates. All productions contribute at least one state

and transition to the subgraph. The last state in the subgraph is the pro-

duction stop state, doubling as the accepting state for each subgraph. While

terminals and nonterminals in the grammar create simple transitions, other

productions, in this context called decision points, lead to complex structures

heavily utilizing ε-transitions.

Dynamic analysis of the ATN starts when encountering a decision point dur-

ing the parsing process. It will begin the lookahead process by using the ATN

state associated with the encountered decision point to create a lookahead

DFA. At first, this DFA contains a single start state. Each DFA state con-

sists of a set of ATN configurations, which describes a tuple made up of the
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Figure 3.1: ATN for the production P −→ a? (b | c) d∗
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ATN state p, the predicted alternative i, the ATN call stack γ and an optional

predicate π. Except for its start state, each DFA state is produced by ap-

plying a modified subset construction algorithm on the ATN subgraph. This

ATN simulation reads one token at a time from the stack and uses the subset

construction to move through all ε-transitions. Simulation continues until it

reaches a terminal matching the token, a nonterminal or a predicate. Predi-

cates act as ε-transitions and are only evaluated at the end of the simulation.

When encountering a nonterminal, the simulation uses the corresponding ATN

subgraph to continue with the subset construction. The set of all reached ATN

configurations is part of the next DFA state. After each new state, the simu-

lation adds an edge from the previous state to the new state labelled with the

read token. The simulation ends once all ATN configurations in the current

DFA state point to the same alternative i and marks this state as being one

accepting state of the DFA.

If the dynamic analysis reencounters the decision point further into the input,

the algorithm can use the existing token labelled edges to move to any DFA

state without recomputing it. Tokens that do not have a transition yet will

restart the subset construction, enabling lazy memorisation similar to packrat

parsing.

Contrary to the simulated lookahead DFAs used by LL(finite), ALL(*) is able

to deal with cycles by utilizing the equality of DFA states. In particular, DFA

states are equal if their set of ATN configurations are equal. When consuming

a repetition, every iteration will result in equal ATN configurations, therefore

creating a cycle in the DFA. These cycles greatly improve performance in

unbounded lookahead scenarios.

Although semantic predicates should be used to remove grammar ambiguities,

there might be cases where the dynamic analysis has to resolve the ambigu-

ity during runtime. A practical example of this would be the ECMAScript

5 (ECMA5) grammar, which contains ambiguities by design [45]. For one, if

all ATN configurations point towards production stop states and the ATN call

stack is empty, ATN simulation cannot continue. Additionally, an overflow

constant limits the total amount of lookahead. This limit guarantees that the

prediction will not continue running until the end of the token stack. Further-
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more, a heuristic is used to determine ambiguities even before reaching the

production stop states, which is explained in more detail by Parr, Harwell and

Fisher [5]. Once an ambiguity is detected, the prediction gracefully terminates

in favour of the alternative with the lowest index.

ALL(*) has been successfully implemented in ANTLR4 [5]. Although the

algorithm performs at O(n4) in theory, their experiments show that it operates

linearly in practice. In particular, they show that the parse time increases

linearly with the file size. Additionally, the authors were able to show that

ANTLR4 performs better than every other Java or C++ parser generator for

the Java grammar, often by multiple orders of magnitude.
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This chapter will concern itself with the implementation of the ALL(*) algo-

rithm and the challenges that arise in the process of it. First, a naive approach

to the problem will be implemented. It will take a shortcut to the solution

by skipping the initial ATN construction, instead choosing to compute the

prediction DFA using the production rules directly. This will allow for a first

validation of the dynamic grammar analysis. Afterwards, we perform a full

implementation of ALL(*) method.

4.1 ATN-less Implementation
In the ALL(*) method, an ATN is built during the analysis phase, which then

derives the lookahead DFA during parse time. The ATNs main task is to pro-

vide a data source for the simulation to compute the next state of the lookahead

DFA. However, this information can also be obtained by recursively calling

the FIRST k/FOLLOW k computation of Chevrotain introduced in section 2.4.

Using the FOLLOW set allows the next state to repeat this computation until

either a single unique alternative has been found or no alternative matches

the input. Since each encountered token produces a new FOLLOW k set, we

always use k = 1 in this computation. Although the implementation of this

approach is straightforward and yields positive results when testing for cor-

rectness on simple grammars, it has several drawbacks making it unfit for

real-world grammars:

• Ambiguous alternatives are never resolved. If two or more alternatives

with the same prefix are identified in LL(k), the algorithm will always

match the first appearing alternative, behaving predictably and deter-

ministically. In the ATN-less implementation, the automaton will con-

tinue iterating over the possible ambiguous alternatives until it finds a

token that does not match any of the tracked alternatives since there

is no configuration in which only a single unique alternative is actually
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valid. As no alternative has been found that matches the token stack, a

parsing error will occur.

• When encountering repetitions during the lookahead phase, a new DFA

state will be constructed for each token instead of creating a cycle. These

additional states decrease performance due to the FIRST k/FOLLOW k

computation performed for each encountered token.

• The approach reaches only sub-par performance. Even on simple gram-

mars, using the ATN-less algorithm yields up to 50% decreased parsing

performance compared to LL(k). Benchmarking was performed using

Chevrotain’s built-in performance benchmarking tool running tests for

the JSON, CSS and ECMAScript 5 parser. This benchmark does not

only include the lookahead computation but the actual parsing step as

well, i.e. consuming input tokens and execution of semantic actions.

While a certain degree of decreased performance can be attributed to

benchmarking unoptimized code inside of a heavily optimized codebase,

the magnitude of the regression implies that the ATN-less approach does

not yield the same performance benefits presented by Parr et al. in their

full implementation of the ALL(*) method.

We perform the full implementation next in the hope of improving both cor-

rectness of the lookahead and performance. It will later be evaluated in chapter

5.

4.2 ALL(*) in Chevrotain
The implementation of the complete ALL(*) method in Chevrotain aligns

closely to the original algorithm presented by Parr and Fisher [4]. Addition-

ally, to facilitate a more straightforward implementation of the method, the

structure resembles the implementation of ANTLR 4.9. Nevertheless, due to

architectural differences in Chevrotain and ANTLR4 and in an attempt to

reduce the amount of breaking changes within the framework, some changes

to the ALL(*) method have been performed.
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4.2.1 Implementation differences

The first difference is the execution of semantic predicates. Similar to ANTLR4,

Chevrotain does not differentiate between syntactic and semantic predicates.

However, they differ drastically in their implementations. Whereas ANTLR4’s

syntactic predicates are expressed as parts of the grammar similar to PEGs

and are transformed into semantic predicates during the static analysis phase,

Chevrotain uses a Turing complete approach to syntactic predicates. Listing

4.1 shows an alternation in Chevrotain with syntactic predicates utilizing the

GATE property and LA(i) method. This strategy, however, does not lend itself

to embedding in the ATN. The reason for this can be explained using the

grammar G5. π1 and π2 are syntactic predicates that act as gates during ATN

simulation. In Chevrotain, no tokens are consumed from the stack during

lookahead. Hence, when the simulation starts with A and continues to B, all

LA(i) method calls will result in an off-by-one error.

G5 : A −→ aB | aB

B −→ π1b | π2b

1 P = this.RULE("P", () => {

2 this.OR([

3 {

4 GATE: () => this.LA (2). tokenType === b

5 ALT: () => this. CONSUME (a)

6 }

7 ])

8 })

Listing 4.1: An example of a syntactic predicates in Chevrotain

We resolve the predicate issue in the same manner as in the current version of

Chevrotain. Instead of considering every predicate that could be encountered

during ATN simulation, only the predicates of the alternation which started

the prediction are taken into account. While implementing the same behaviour

as proposed by Parr et al. [5] is possible, it would result in a breaking change

in the behaviour of Chevrotain and will therefore not be performed.
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Additionally, this change enables another optimization for predicated alter-

nations. ATNLR’s LL(*) algorithm performs predicate evaluation at the end

of the lookahead. Consequently, predicates that would have resolved ambi-

guities already at the start are evaluated at the end. While this behaviour

guarantees the stability of the constructed DFA [5] regarding predicates, it

also increases the amount of lookahead needed for predicated alternations. In

our implementation, predicates are evaluated at the start of the lookahead,

with each configuration of predicate results receiving a dedicated lookahead

DFA instance. This change resolves the stability issue experienced when using

only a single DFA and potentially reduces the amount of lookahead needed

for predicated alternations at the cost of having to construct 2n DFAs with n

being the number of predicates within an alternation.

Another difference is the addition of separated repetitions in Chevrotain. This

feature simplifies repetitions by introducing a separating terminal. For exam-

ple, a list of function arguments in a programming language usually has to be

expressed using a rule such as P −→ (ID (′,′ ID)∗)?. Using separated repe-

titions, developers can skip the optional production and write this rule with

a single repetition, as shown in listing 4.2. This feature has to be considered

when predicting an alternative and, therefore, also in the ATN construction.

Separators introduce new states and transitions, which must be added to the

construction algorithm.

1 Args = this.RULE("Args", () => {

2 this.MANY ({

3 SEP: Comma ,

4 DEF: () => this. CONSUME (ID)

5 })

6 })

Listing 4.2: Argument list using a separated repetition

4.2.2 Ambiguity Detection

For LL(*) grammars, ambiguity detection cannot be performed by simply com-

paring token sequences across alternatives, since they could grow infinitely

large. Instead, a more sophisticated grammar analysis is necessary. While
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ANTLR4 postpones this ambiguity detection to the dynamic analysis phase

[4], being able to provide meaningful error messages on ambiguous behaviour

during static analysis is of great benefit to users of the parsing library.

In the context of Chevrotain, detecting ambiguities of an alternation is to de-

termine whether at least two alternatives can predict the same sentence. In

other words, the intersection of the language La (produced by one alterna-

tive) and Lb (produced by another alternative) is not empty. Confirming this

is comparatively simple for type 3 languages, where we could construct an

intersection automaton and determine whether it has any non-ε-transitions.

However, for context-free grammars, the issue is more complex. It has been

proven that whether a context-free grammar is (un)ambiguous is an undecid-

able problem [21].

Since this issue is a practical consideration for Chevrotain and is not part of any

of the research objectives, this thesis does not concern itself any further with

this question. Instead, the dynamic analysis is used to report on ambiguities

during run time. The inclined reader will find more information on this topic in

the works of Pandey [46] and Basten [47]. The authors present, test and rank

state-of-the-art methods for ambiguity detection of context-free grammars.
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In section 1.2, we raised the questions of whether Chevrotain is actually faster

than ANTLR4 for complex grammars and whether this performance can be

enhanced even further by implementing the ALL(*) strategy in Chevrotain. In

the following, we will explain how we ensure the correctness of our implementa-

tion and how we plan to answer our research questions. To differentiate better

between the versions of Chevrotain, we will refer to them as Chevrotain(k)

and Chevrotain(*) for the respective lookahead length.

5.1 Correctness
Chevrotain features multiple testing suites to ensure the functional correctness

of the library. The most basic test suite performs unit tests by testing parsing

functions in isolation. Additionally, a large set of integration test cases en-

sures that these functionalities correctly work in conjunction. In these tests,

a custom parser is usually built to test specific features of the library, such as

its lookahead or error recovery functionality. The Chevrotain project requires

any contributions to maintain a code-coverage of 100%. Although achieving

code-coverage is not a good predictor for correct functionality [48], it is easily

enforceable and provides some degree of certainty in both functionality and

edge case behaviour, assuming the tests are written sensibly. Furthermore,

Chevrotain features example implementations of commonly used languages

in another test suite, ranging from simple descriptive languages like CSV and

JSON to more complex languages like GraphQL and ECMAScript 5. The abil-

ity to correctly parse these languages provides an additional level of confidence

in the implementation.

Before adding any tests that explicitly test the behaviour of the ATN construc-

tion or simulation, the test suites contain 1213 test cases. Running the test

suites resulted in 5 failures, leaving 1208 passing tests. All testing failures con-

cern themselves with the unique lookahead behaviour of certain ECMAScript

features, which is accomplished by overriding lookahead related parser meth-
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ods. These are now deprecated, which results in unexpected lookahead be-

haviour. All other integration tests pass.

Using the existing tests, test coverage of 96% and 97% has been achieved for

the ATN construction and simulation, respectively. This leaves 16 lines of

untested code, indicating either a comparatively small amount of edge cases

or high quality of the integration tests. In any case, after adding further

tests for the new lookahead strategy, our confidence in the correctness of the

implementation of the ALL(*) method is high. The tests are responsible for

testing new behaviour, such as always predicting the longest alternative or

correctly resolving ambiguities during dynamic analysis.

5.2 Benchmarking
We aim to answer both research questions by performing benchmarks on

Chevrotain(k), Chevrotain(*) and ANTLR 4.9. The source of the first claim

– to recall, being unsure whether Chevrotain performs faster in its benchmark

due to the simplicity of the parsed language in question or employing superior

optimization tactics – can be validated by performing another benchmark using

more complex languages. For this, we will use the existing benchmarking in-

frastructure of Chevrotain. To facilitate easier development and maintenance,

Chevrotain allows comparing the parsing performance of its last release with

the current in-development version using a simple script. Since performance is

a feature of Chevrotain, regressions are treated the same as functional regres-

sion. Therefore, this benchmark script can be seen as an additional test suite.

It compares the performance of parsers implemented for the JSON, CSV and

ECMA5 languages to the current baseline.

In particular, ECMA5 can be considered a complex language and exhaustive

concerning the parsing features needed to to parse the language successfully.

For example, it contains ambiguities, employs rule recursion and requires se-

mantic predicates. Note that ECMA5 is an LL(2) language when respecting

semantic predicates. In addition to the different versions of Chevrotain, we will

include ANTLR4 for the upcoming benchmark. For this purpose, we will use

the reference implementations for the respective grammars from the ANTLR4
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grammars-4 repository [49]. These grammars align with the official specifica-

tions of their respective languages. While this usually decreases performance,

it increases the likelihood of correctness. The Chevrotain parser for any given

language will also align to the specification to prevent grammar specific per-

formance optimizations, which might impact the comparison negatively. An

ANTLR4 based JS parser for each language will be generated and incorporated

into the benchmarking infrastructure.

In addition, we also include parsers for the Java programming language in the

benchmark. Contrary to ECMA5, it does not feature ambiguities but instead

covers the unbounded part of the lookahead algorithm. In many parts of the

grammar, such as lambda expressions, typecasting or package declarations,

Java requires unbounded lookahead to align closely with the official specifi-

cation. In Chevrotain(k), these productions are parsed using backtracking,

which incurs a heavy performance penalty. Chevrotain(*) should be able to

parse Java code without backtracking, thereby improving performance. Note

that the specification uses left-recursion and therefore needs to be transformed

into an LL conform grammar without left-recusion.

The Chevrotain benchmark performs multiple parses over the same input to

gain statistically significant results. This type of benchmark automatically bi-

ases the results towards a parsing technique with memorisation since reparsing

a document does not require computing new DFA states. Nevertheless, such

a scenario is valuable for several real-world use cases, such as editors, which

reparse input several times with minimal modification. Hence, we also perform

a second, more exhaustive benchmark. We will parse a larger corpus of files

once, which aligns more with how command-line tools operate.

Furthermore, we include the Acorn parser [50] for the ECMA5 benchmark. It

serves as a “gold-standard”, being a handwritten parser for JS using JS itself.

Usually, we would consider using parser implementation from a JS runtime.

However, due to it being an interpreted language, these parsers are compiled

to machine code, rendering comparison with them misleading.

All benchmarks will be conducted on an AMD Ryzen 7 3700X 8-Core CPU

with 2133 MHz RAM running Windows 10. The benchmark excutes the full
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parser flow, including lexical analysis of the input. The input files are stored

in memory before the benchmark begins to minimise the impact of disk-read-

related bottlenecks. The benchmarking framework used is “Benchmark.js”

[51].

5.3 Results
Table 5.1 shows the performance of different parsing libraries for selected lan-

guages. The results are measured in operations per second, meaning that a

higher numerical value of a parsing library compared to other results of the

same row indicates higher parsing performance for that specific language. The

benchmarking framework repeated parsing a hundred times to gain statistically

significant results, making the results prone to memorisation bias.

In general, Chevrotain(*) shows slightly performance across LL(2) languages

compared to Chevrotain(k). Using the LL(*) algorithm has decreased parsing

performance by 1%, 2% and 5% on JSON, CSS and ECMA5 respectively. Ad-

ditionally, it is 24% slower than our set “gold-standard” for ECMA5, Acorn.

Both Chevrotain versions outperform ANTLR4 by multiple factors on JSON

and by multiple orders of magnitude on CSS and ECMA5. For Java, Chevro-

tain(*) outperforms Chevrotain(k) and ANTLR4 by a factor of 10 and 16,

respectively.

While the results for the JSON language are consistent with the online bench-

mark provided by Chevrotain, ANTLR4 performs unexpectedly slowly for the

CSS and ECMA5 language. When looking at the reference CSS grammar for

ANTLR4, it can be quickly discerned that it does not follow the specification

closely. It seems to contain additional productions to deal with malformed

input and therefore spends more time during its lookahead prediction. Al-

though this might not explain the full extent of the performance regression,

it indicates that the Chevrotain and ANTLR4 results are not comparable due

to differences in their concrete grammar. The differences in performance for

the ECMA5 grammar are not as noticeable and will be explained later in this

section.
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Figure 5.1: Parse time in seconds in relation to the parsed amount of text.
Conducted on 13MB of ECMA5 code from the Theia-IDE frame-
work
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Figure 5.2: Memory consumption in MB in relation to the parsed amount of
text. Conducted on 13MB of ECMA5 code from the Theia-IDE
framework
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Figure 5.3: Number of DFA states in relation to the amount of files parsed.
Conducted on 13MB of ECMA5 code from the Theia-IDE frame-
work
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Figure 5.4: Parse time in seconds in relation to the parsed amount of text.
Conducted on 40MB of Java code from the Spring framework
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Figure 5.5: Memory consumption in MB in relation to the parsed amount of
text. Conducted on 40MB of Java code from the Spring framework
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Table 5.1: Single file parsing performance of different parser libraries measured
in operations per second.

Chevrotain(*) Chevrotain(k) ANTLR4 Acorn
JSON 9184 9527 3175 —
CSS 3092 3127 8.22 —
ECMA5 471 496 4.65 621
Java 20.05 2.03 1.22 —

Figures 5.1 and 5.2 display performance metrics of Chevrotain ECMA5 parsers

and the Acorn library using a corpus of 13MB of code taken from the Theia-

IDE framework. They show the parse time and memory consumption through-

out the full parsing process. All parsers perform in linear time with results

that are consistent with the data shown previously in table 5.1. Note that

Chevrotain(*) performs linearly, although its memorisation approach makes it

susceptible to non-linear behaviour due to the initial warm-up phase of the

ATN simulation.

As shown in figure 5.2, memory consumption for Chevrotain(*) stays close to

the original Chevrotain(k) parser. The increased memory consumption can

be attributed to the creation of DFAs states which are not disposed of during

garbage collection. Additionally, it can be observed that DFA computation

leads to higher memory consumption at the start of the parsing process.

Furthermore, memory consumption is also the reason why ANTLR4 does not

appear in figures 5.1 and 5.2. After parsing less than 10% of the test corpus, the

benchmark crashes with an out-of-memory error. Figure 5.3 demonstrates this

behaviour by showing the amount of DFA states constructed during parsing.

After less than a thousand files, ANTLR4 has already constructed more than

110.000 DFA states using more than 4GB of memory, thereby crashing the

Node.js runtime. Given that ECMA5 is a predicated LL(2) language, it seems

unreasonable to create such a large amount of DFA states. Chevrotain(*) also

indicates this, which only creates 72 DFA states for parsing the whole corpus.

The source of this issue is quickly identified and is inherent to ANTLR4’s

employed ambiguity resolving strategy. ECMA5 contains an ambiguity for

function declarations, which a syntactic predicate can easily resolve. Although
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the ANTLR4 grammar used in this benchmark contains such a predicate, it is

only evaluated at the end of the ambiguity. Therefore, ANTLR4 needs to parse

the whole function declaration before deciding on the correct alternative. Since

function declarations are often long and filled with different token types, the

lookahead automaton for this alternation quickly increases in size, resulting in

the out-of-memory error.

Contrary to ANTLR4, Chevrotain(*) evaluates predicates already at the start

of the alternation, therefore excluding impossible alternatives from the DFA

state computation completely. This approach automatically resolves the predi-

cated ambiguity problem experienced by ANTLR4 based parsers and decreases

demand for DFA computation drastically, as shown in figure 5.3. For the single

file performance benchmark of table 5.1, ANTLR4 needs to process multiple

hundred tokens to come to a lookahead prediction. Even with memorisation,

this incurs a heavy performance penalty and explains the magnitude of per-

formance difference compared to Chevrotain.

Moving on to Java parsers, we can see in figure 5.4 that both versions of

Chevrotain perform in linear time, with Chevrotain(*) being twice as fast as

Chevrotain(k). The Chevrotain(k) parser uses backtracking to accomplish

unbounded lookahead required by parts of the Java grammar specification.

Replacing backtracking in favour of actual unbounded lookahead has a highly

positive impact on parsing performance. Nevertheless, the performance in-

crease is not as significant as indicated by the data displayed in table 5.1.

This behaviour can be explained by taking the data shown in figure 5.6 into

account. Throughout the whole parsing process, the adaptive predict algo-

rithm continues to construct 2.7 new DFA states per parsed document on

average. Consequently, Chevrotain(*) spends some time on the subset con-

struction algorithm for each encountered file. However, when reparsing the

same document repeatedly, no new ATN configurations can be encountered,

thereby skipping the subset construction and improving parsing performance.

ANTLR4 displays irregular behaviour when parsing the large test corpus com-

pared to Chevrotain. Although all three parsers show linear parsing perfor-

mance up to 10MB, ANTLR4 behaves non-linearly afterwards. The start of

this behaviour coincides with a sharp increase in memory consumption seen in
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figure 5.5. While Chevrotain’s memory usage remains relatively stable across

the test corpus, the ANTLR4 parser experiences large spikes. Note that dur-

ing the memory benchmark, the GC is invoked manually in a regular interval.

Consequently, large spikes indicate increased memory usage over short peri-

ods. The observed non-linear behaviour of ANTLR4’s parsing performance

could be related to the additional time it takes for the runtime to perform its

GC. This would explain the linear behaviour seen for the first 10MB and the

irregular behaviour after that. Although figure 5.6 shows an increase of DFA

states after 10MB as well, it is no clear explanation for the memory spikes,

considering that Chevrotain(*) does not experience this abnormal behaviour.

Instead, we argue that the algorithms and data structures ANTLR4 employs

to perform the subset construction are not suitable for the V8 runtime engine.

This is a consequence of ANTLR4’s main target platform being the Java run-

time and the fact that the implementation of the ANTLR4 runtime on all other

target platforms is closely aligned to the Java implementation. A prominent

example of this is the custom dictionary implementations used for ANTLR4

in JS. To replicate the exact behaviour of the Java implementation, ANTLR4

cannot use natively implemented dictionaries. Consequently, every algorithm

built on top of these custom implementations operates on slower data struc-

tures that are prone to higher memory consumption. While this is a plausible

explanation for the increased memory usage, more investigation is needed to

confirm this suspicion.

Figure 5.6, which displays the number of constructed DFA states throughout

the benchmark for ANTLR4 and Chevrotain(*), is also showing unexpected

behaviour. Given that ANTLR4 and Chevrotain both parse the same gram-

mar, it is surprising that ANTLR4 constructs approximately twice the amount

of DFA states at any point of the benchmark compared to the Chevrotain im-

plementation. The scaled plot of Chevrotain(*) closely resembles the plot of

ANTLR4, intuitively suggesting either an error in the implementation of the

LL(*) algorithm or a difference in the number of alternatives in the grammar.

However, the actual reason for this behaviour is the same as for the data shown

in figure 5.3, although not as obvious. The Chevrotain(*) Java grammar con-

tains 20 syntactic predicates used to speed up the lookahead algorithm without
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influencing the actual parsing result. Although the parser correctly parses any

input without these predicates, they are used to skip the prediction of spe-

cific alternatives, thereby reducing the total amount of lookahead necessary

for each prediction as well as the total number of DFA states.

Nevertheless, this does not allow elimination of all LL(*) predictions. Con-

sequently, Chevrotain(*) still experiences a steady increase of DFA states,

although not as large as ANTLR4’s. Adding these predicates to ANTLR4

as well does not improve parsing performance or reduce the amount of DFA

states. On the contrary, it increases parse time due to the additional eval-

uation of predicates at the end of its lookahead. Since ANTLR4 continues

with the ATN simulation until it can predict a single alternative even in the

presence of predicates, its lookahead algorithm constructs the same amount of

DFA states as if predicates were absent. Chevrotain(*) constructing roughly

half the amount of DFA states can be therefore attributed to chance rather

than errors in the Chevrotain(*) implementation or the grammars employed

for the benchmark.

5.4 Summary
Having analyzed the runtime behaviour of Chevrotain(*), Chevrotain(k) and

ANTLR4 in-depth, we can summarize our results as follows:

1. Chevrotain(*) displays almost equivalent runtime performance compared

to Chevrotain(k) on all LL(k) grammars. In general, it performs slightly

worse, with up to 5% less operations per second on the single file bench-

mark.

2. It performs better than Chevrotain(k) by multiple factors on LL(*) gram-

mars. Chevrotain(k) requires to employ backtracking to parse them ef-

fectively.

3. Both implementations outperform ANTLR4 by multiple factors or even

magnitudes. This effect becomes more exaggerated the more complex

the grammar becomes.

4. Chevrotain(*) consumes approximately the same memory as ANTLR4.
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In conclusion, we were able to show that the ALL(*) algorithm does not im-

prove parsing performance for LL(k) grammars in Chevrotain. Instead, it

enables the parser to handle LL(*) grammars without requiring backtracking,

albeit at the cost of a minor performance regression. Additionally, we can

observe that the implementation differences to ANTLR4 result in significantly

increased parsing performance for predicated ambiguous alternatives.
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6 Discussion

In this chapter, we discuss our findings and the conduct of this thesis. Firstly,

we identify differences and overlap in our results and the work of Parr et al. [4,

5]. Secondly, we present advantages and potential disadvantages arising from

differences in the LL(*) implementation. Finally, we analyze any threats to

the validity of our work.

6.1 Comparison with ANTLR LL(*)
Figure 6.1 displays the benchmark results for parsing 123MB of Java 6 code

as presented by Parr et al. [5]. It shows a clear improvement of ANTLR4

LL(*) compared to traditional LL(k) parser generators. These results cannot

be reproduced using a Java 17 parser sourced from the grammars-v4 repos-

itory with the V8 JS runtime. The results are not even reproducible in the

Java runtime environment. We assume this is due to two factors: The Java

6 grammar contains no generics or lambda expressions introduced in Java 7

and 8, respectively. This lack of new features makes the language much easier

to parse compared to later iterations of Java. Furthermore, we assume that a

non-specification compliant Java grammar has been employed for the original

ANTLR4 benchmark. This is indicated by using LL(k) parsers in the bench-

mark, which cannot parse a specification compliant Java grammar due to its

LL(*) decisions.

Although we were unable to show in our experiments that Chevrotain(*)

parsers are faster than equivalent, backtracking-less Chevrotain(k) parsers, we

can support the claim made by Parr and Fisher [4] that the ALL(*) method

provides an efficient lookahead mechanism on a par with commonly used LL(k)

algorithms. We can also observe other similarities, such as the ever-increasing

amount of DFA states on the Java grammar or the improved parse time when

reparsing a test corpus. Nevertheless, our experiments do not indicate a clear

superiority of ALL(*) compared to optimized LL(k) lookahead.
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Figure 6.1: Comparing Java parse times on Java 6 Library and compiler source
code [5]

6.2 Effect of Implementation Differences
The largest deviation in behaviour of Chevrotain(*) compared to ANTLR4

involves handling ambiguities in predicated grammars. To recall, our imple-

mentation only resolves the predicates of the starting alternation and creates

a DFA for each unique predicate configuration. The driving force behind this

decision was to enable faster ambiguity resolution for predicated alternations.

Our experiments further enforce this decision by showing that this ambiguity

resolving strategy successfully reduces the amount of DFA states needed to

parse ambiguous grammars. This effect is shown heavily exaggerated in the

ECMA5 grammar, where this strategy reduced a potentially expensive LL(*)

decision into an LL(2) decision.

Nevertheless, there is an obvious disadvantage to this approach. Aside from the

predicates of the alternation that started the prediction, no other predicates

are taken into account during dynamic analysis. This could potentially lead

to parsing errors of valid input on LL(k) languages. Take G6 as an example,

which contains a parameterized production B:

G6 : A −→ B<false> | B<true>

B<π> −→ {π} a | {!π} b
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When receiving the terminal input a, our ALL(*) implementation will always

choose the first alternative of A, as it is the alternative with the lowest in-

dex. However, when performing the lookahead afterwards inside of B, it will

determine that a is not a valid option anymore since its associated predicate

returns false. Consequently, although the language produced by G6 contains

a, the parser cannot parse the word and reaches an erroneous state. While

ANTLR4 deals with this edge case correctly, such a grammar configuration

is rare. Additionally, it can still be parsed correctly by using backtracking.

Therefore, we believe that our early exit strategy is better suited for Chevro-

tain than the predicate resolving strategy employed by ANTLR4.

6.3 Threats to Validity
Empirical evidence is prone to many different kinds of biases, measurement

errors, and other issues that might threaten the validity of our work. We now

discuss the precautions we have taken to prevent these issues from invalidating

our results.

When benchmarking code in interpreted languages, the cold-startup behaviour

of the runtime has to be taken into account. Figure 6.2 shows the effect

of benchmarking the parsers without an initial warm-up phase. Instead of

the expected linear behaviour exhibited in figure 5.1, we observe seemingly

logarithmic runtime behaviour. However, the additional time needed here

can be attributed to the runtime engine optimizing code only after it has

seen it multiple hundred times. In the meantime, the runtime executes non-

optimized code, which incurs a performance penalty. The amount of yet-to-be

optimized code decreases as the benchmark progresses, ultimately leading to

linear behaviour. The data for figures 5.1 and 5.4 has been collected after

each parser has seen the whole test corpus once. Note that the DFAs for

Chevrotain(*) and ANTLR4 have been reset to provide accurate measurements

of the subset-construction algorithm.

Additionally, measurements for parse time and memory consumption have

been conducted independently from each other. To gain an accurate pre-

sentation of memory usage, we tracked the memory for each parsed file and
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also regularly invoked the GC. We have done this to gain more comprehensi-

ble data over long-lived objects such as DFA states. However, it also incurs a

performance penalty unrelated to the actual parsing performance. Therefore,

the benchmarks shown in figures 5.1 and 5.4 have been conducted without

memory measurements. Instead, figure 6.3 presents the impact of accurate

memory measurements on parse time. It shows that parse time increases by a

factor of 20 when also measuring memory usage.

It could be argued that manually invoking the GC falsifies the results. How-

ever, we could only barely verify the general upwards trend of LL(*) parsers in

memory consumption without it. Figure 6.4 presents the memory consumption

of the Java parser benchmark without manually invoked GC. While a faint

trend for Chevrotain(*) and ANTLR4 is visible in the data, most of it is simply

noise produced by short-lived objects which are deleted from memory during

GC as indicated by the zig-zag pattern. Since we already discussed the per-

formance impact of a large number of short-lived objects in section 5.3, we are

confident that analyzing the data presented in figures 5.2 and 5.5 is less prone

to misinterpretation compared to data generated by GC-less benchmarks.
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Figure 6.2: Parse time of the JS test corpus when performing the benchmark
without an initial warm-up phase. The dashed plots represent the
data from figure 5.1.
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Figure 6.3: Parse time of the JS test corpus while also measuring memory con-
sumption and regularly invoking GC. The dashed plots represent
the data from figure 5.1.
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Figure 6.4: Memory consumption for Java parsers without manually invoking
the GC.
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7 Conclusion

The area of unbounded lookahead for LL parsers is mainly unexplored and

complex. Only little existing research covers this topic, with the most promis-

ing being the ALL(*) method presented by Parr, Fisher and Harwell [4, 5]

for the parser generator ANTLR4. However, informal benchmarks using the

V8 JS engine have shown that optimized LL(k) parsers outperform ANTLR4

based parsers by multiple factors. This thesis aims to provide an unbiased com-

parison of LL(k) and LL(*) lookahead methods by implementing the ALL(*)

method in the LL(k) parser Chevrotain.

We presented an implementation of the ALL(*) method for Chevrotain and

were able to show that employing this lookahead strategy slightly decreases

parsing performance for common use cases compared to an optimized LL(k)

lookahead algorithm. However, it vastly expands the range of parseable gram-

mars. Additionally, we were able to improve significantly on the implemen-

tation of the ALL(*) method compared to ANTLR4 for predicated ambigu-

ity detection. Furthermore, our experiments have confirmed that Chevrotain

parsers are faster and more memory efficient than ANTLR4 parsers for equiv-

alent grammars.

Consequently, we still see room for improvement for ALL(*). Since our em-

ployed predicate evaluation strategy has its drawbacks, consolidating it with

the advantages of ANTLR4’s approach could be one potential field of future

work. In addition to this, other macro and micro-optimization tactics can be

explored to increase parsing performance even further. As presented in section

4.2.2, static ambiguity detection had to be dropped from Chevrotain due to

its complexity when operating in an unbounded lookahead scenario. Further

research in this area is needed to provide accurate validations.

As for the practical application of this work, both the authors of this thesis

and the maintaining contributors of Chevrotain agree to upstream the change.

Chevrotain will employ the ALL(*) method as its definitive lookahead strategy.
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Appendix

Listings

1 class Parser extends CstParser {

2 constructor () {

3 super ([a, b, c, d, e]) // An array of used tokens

4 this. performSelfAnalysis ()

5 }

6

7 A = this.RULE("A", () => {

8 this. CONSUME (a)

9 this.MANY (() => {

10 this. CONSUME (b)

11 this. CONSUME (c)

12 })

13 this. OPTION (() => {

14 this. SUBRULE (B)

15 })

16 });

17

18 B = this.RULE("B", () => {

19 this.OR([

20 {

21 ALT: () => {

22 this. CONSUME (d)

23 }

24 },

25 {

26 ALT: () => {

27 this. CONSUME (e)

28 }

29 }

30 ])

31 })

32 }

Listing 1: A simple Chevrotain parser
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Appendix

1 function lookahead ( alternatives ) {

2 const numOfAlts = alternatives . length

3 for (let t = 0; t < numOfAlts ; t++) {

4 const currAlt = alternatives [t]

5 const currNumOfPaths = currAlt . length

6 nextPath : for (let j = 0; j < currNumOfPaths ; j++) {

7 const currPath = currAlt [j]

8 const currPathLength = currPath . length

9 for (let i = 0; i < currPathLength ; i++) {

10 const nextToken = this.LA(i + 1)

11 if (! tokenMatcher (nextToken , currPath [i])) {

12 // mismatch in current path

13 // try the next path

14 continue nextPath

15 }

16 }

17 // found a full path that matches .

18 // this will also work for an empty alternative as

the previous loop will be skipped

19 return t

20 }

21 // none of the paths for the current alternative

matched

22 // try the next alternative

23 }

24 // none of the alternatives could be matched

25 return undefined

26 }

Listing 2: Chevrotain Lookahead algorithm for k > 1
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Appendix

1 function singleTokenLookahead ( alternatives ) {

2 const singleTokenAlts = map( alternatives , ( currAlt ) => {

3 return flatten ( currAlt )

4 })

5

6 const choiceToAlt = reduce (

7 singleTokenAlts ,

8 (result , currAlt , idx) => {

9 forEach (currAlt , ( currTokType ) => {

10 if (! has(result , currTokType . tokenTypeIdx )) {

11 result [ currTokType . tokenTypeIdx ] = idx

12 }

13 forEach ( currTokType . categoryMatches ,

( currExtendingType ) => {

14 if (! has(result , currExtendingType )) {

15 result [ currExtendingType ] = idx

16 }

17 })

18 })

19 return result

20 },

21 {}

22 )

23

24 return function lookahead () {

25 const nextToken = this.LA (1)

26 return choiceToAlt [ nextToken . tokenTypeIdx ]

27 }

28 }

Listing 3: Chevrotain Lookahead algorithm for k = 1
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